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Abstract The challenge of General Game Playing (GGP) is to devise game playing prog-
rams that take as input the rules of any strategic game, described in the Game Descrip-
tion Language (GDL), and that effectively play without human intervention. The aim of this
paper is to address the GGP challenge by casting GDL games (potentially with chance events)
into the Stochastic Constraint Satisfaction Problem (SCSP). The stochastic constraint net-
work of a game is decomposed into a sequence of μSCSPs (also know as one-stage SCSP),
each associated with a game round. Winning strategies are searched by coupling the MAC
(Maintaining Arc Consistency) algorithm, used to solve each μSCSP in turn, together with
the UCB (Upper Confidence Bound) policy for approximating the values of those strategies
obtained by the last μSCSP in the sequence. Extensive experiments conducted on various
GDL games with different deliberation times per round, demonstrate that the MAC-UCB
algorithm significantly outperforms the state-of-the-art UCT (Upper Confidence bounds for
Trees) algorithm.
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1 Introduction

From early on [23], the development of game-playing programs has become a major
research area in the field of Artificial Intelligence. Nowadays, computer players for classical
board games like chess [5] and checkers [22] are able to defeat human players on grandmas-
ter level. Even for games of “chance” like Backgammon [27], and games with incomplete
information like (heads-up limit hold’em) Poker [4], computer players have reached an
excellent level. Yet, one point of objection to the success of these game-playing programs
is that they are highly tailored to the game at hand, relying on the game specific knowledge
and expertise of their developers.

The aim of General Game Playing (GGP) is to devise game-playing algorithms which
are not dedicated to a specific game, but are general enough to effectively play a wide
variety of games. A tournament is held every year by AAAI [10], in which computer play-
ers are supplied the rules of arbitrary new games and, without human intervention, have
to play those games optimally. The rules of each game are described in a declarative rep-
resentation language, called GDL for Game Description Language [14]. The latest version
of this language, GDLII, is an extension of GDL which is expressive enough to describe
finite multi-player games with uncertain and incomplete information [29]. GGP algorithms
include, among others, logic programming [28], answer set programming [17], automatic
construction of evaluation functions [7], and Monte Carlo methods [6, 9]. Beyond its play
value, GGP offers a rigorous setting for modeling and analyzing sequential decision-making
algorithms in multi-agent environments.

By providing a declarative approach for representing and solving combinatorial prob-
lems, Constraint Programming appears as a promising technology to address the GGP chal-
lenge. Actually, several constraint-based formalisms have already been proposed to model
and solve games; they notably include Quantified CSP[11], Strategic CSP[3] and Con-
straint Games [19]. Most of these formalisms are, however, restricted to deterministic,
perfect information games: during each round of the game, players have full access to the
current state and their actions have deterministic effects. This paper focuses on stochas-
tic games, with chance events, using the framework of stochastic constraint networks
[12, 26, 30].

From this perspective, we study a fragment of the Stochastic Constraint Satisfaction
Problem (SCSP), that captures GDLgames with uncertain (but complete) information. Inter-
estingly, the SCSP for this class of games can be decomposed into a sequence of μSCSPs
(also known as one-stage stochastic constraint satisfaction problems [30]). Based on this
decomposition, we propose a sequential decision-making algorithm, MAC-UCB, that com-
bines the MAC (Maintaining Arc Consistency) technique for solving each μSCSP in the
sequence, and the multi-armed bandits Upper Confidence Bound (UCB) method [1] for
approximating the expected utility of strategies. We show that, in practice, MAC-UCB signif-
icantly outperforms UCT (Upper Confidence bound for Trees), which is the state-of-the-art
GGP algorithm for stochastic games [25]. MAC-UCB also dominates FC-UCB, a variant
where the MAC algorithm is replaced with the classical Forward Checking (FC) method.
Such conclusions are drawn from comparing the performance of these algorithms, using
extensive experiments (1,800,000 face-offs) over a wide range of GDL games.

The paper is organized as follows. The formal setting of GDL games is introduced in
Section 2, and the SCSP framework for encoding GDL games is detailed in Section 3. Our
algorithm MAC-UCB is examined in Section 4. The experimental setup and empirical results
are discussed in Section 5. Finally, Section 6 concludes with several perspectives of further
research.
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2 GDLgames

The problems under consideration in GGP are finite sequential games. Each game involves
a finite number of players, and a finite number of states, including one distinguished initial
state, and one or several terminal states. On each round of the game, each player has at her
disposal a finite number of actions (called “legal moves”); the current state of the game is
updated by the simultaneous application of each player’s action (which can be “noop” or
do nothing). The game starts at the initial state and, after a finite number of rounds, ends at
some terminal state, in which a reward is given to each player. In a stochastic game, a dis-
tinguished player, often referred to as “chance”, can choose its actions at random according
to a probability distribution defined over its legal moves. In this study, we shall focus on
fully observable stochastic games in which, at each round, the current game state, the play-
ers’ legal moves, and the probability distribution over chance events, are accessible to all
agents.

2.1 GDLsyntax

GDL is a declarative language for representing, in a compact and intuitive way, finite games.
Basically, a GDL program is a set of rules described in first-order logic. Players and game
objects (coins, dices, locations, etc.) are described by constants, while fluents and actions
are described by first- order terms. The atoms of a GDL program are constructed over a
finite set of relation symbols and variable symbols. Some symbols have a specific mean-
ing in the program, and are described in Table 1. For example, in the tic-tac-toe game,
legal(alice,mark(X,Y)) indicates that player alice is allowed to mark the square
(X,Y) of the board. In GDLII, the last two keywords of the table (random and sees)
are added to represent stochastic games (ex: Backgammon), and partially observable games
(ex: Battleship). In light of the games considered in this study, we will focus on GDLII pro-
grams without the sees keyword.

The rules of a GDL program are first-order Horn clauses. For example, the rule:

legal(bob,noop) ←true(control(alice))

Table 1 GDLII keywords

Keywords Description

role(P) P is a player

init(F) the fluent F holds in the initial state

true(F) the fluent F holds in the current state

legal(P,A) the player P can take action A in the current state

does(P,A) the player P performs action A

next(F) the fluent F holds in the next state

terminal the current state is terminal

goal(P,R) the player P gets reward R in the current state

random the ”chance” player

sees(P,F) the player P perceives F in the next state
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indicates that noop is a legal action of bob if it is alice’s turn to move. In order to rep-
resent a finite sequential game, a GDL program must obey to syntactic conditions, defined
over the terms and relations occurring in rules, and the structure of its rule set. We refer the
reader to [14, 29] for a detailed analysis of these conditions.

Example 1 ”Matching Pennies” is a well-known game involving two players, who simulta-
neously place a penny (or coin) on the table, with the payoff depending on whether pennies
match. We consider here a variant in which alice and bob cooperatively play against the
chance player (random). During the first round, alice and bob simultaneously place a
coin on the table and, during the second round, random flips a coin; alice and bob win
only if all the three sides are heads or tails. The corresponding GDL program is described in
Fig. 1. Notably, the built-in predicate alleq(X,Y,Z) is true if and only if X = Y = Z.

2.2 GDLsemantics

The semantics of any GDL program with chance events can be captured by a “stochastic
game” [18, 24] which is essentially a multi-player Markov decision process. For the sake of
clarity, we present here a slight variant of this model which uses an explicit representation
of the chance player.

Definition 1 A k-player stochastic game consists of a set {0, 1, · · · , k} of players, with 0
referring to as the chance player, a setA of actions, a setF of fluents, and a labeled directed
graph G = 〈S, E〉 where S is the set of nodes and E the set of directed edges (or arcs).

Fig. 1 GDL program of the cooperative Matching Pennies game
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Sgoal ⊆ S is the set of terminal nodes and sinit ∈ S is the initial node. With G is associated
a tuple of labeling functions 〈A, F, P, r〉 such that:
– A = (A0, A1, · · · , Ak), where Ap maps each non-terminal node s ∈ S \Sgoal to a finite

subset of actions Ap(s) ∈ 2A,
– F maps each node s ∈ S to a finite subset of fluents F(s) ∈ 2F ,
– P maps each non-terminal node s ∈ S\Sgoal to a probability distribution over the action

set of the chance player A0(s),
– r = (r1, · · · , rk), where each rp maps each terminal node s ∈ Sgoal to a value rp(s) ∈

[0, 1].
With each non-terminal node s ∈ S \ Sgoal is associated one edge per tuple a =
(a0, a1, · · · , ak) ∈ A(s), where A(s) = (A0(s), A1(s), · · · , Ak(s)). The successor of s

with respect to a is denoted Q(s, a). A tree-like stochastic game is a stochastic game for
which the undirected graph of G is a tree.

Intuitively, F(s) captures the state description of s, A(s) defines the set of joint legal
moves at s, P(s) captures the likeliness of chance events, and r(s) specifies the players’
rewards at s. Any tuple a = (a0, a1, · · · , ak) ∈ A(s), is called an action profile; ap is
the action of player p at s, and a−p = (a0, a1, · · · , ap−1, ap+1, · · · , ak) is the action pro-
file of the other players. Notably, a−0 induces a probability distribution over the set of
states {Q(s, a) : a = (a0, a−0), a0 ∈ A0(s)}, where the probability of Q(s, a) is given by
P(s)(a0), the likeliness that event a0 occurs at s.

Based on these notions, the stochastic game G associated with a GDL program G is
defined as follows. Let B denote the Herbrand base (i.e. the set of all ground terms) of G.
Then A (resp. F ) is the set of all ground action terms (resp. fluent terms) occurring in
B. The number k of ground terms p such that role(p) ∈ G, determines the set of play-
ers {0, 1, · · · , k}. The node set S is constructed inductively from the source node sinit and
the GDL keywords. Namely, the state description F(sinit) is given by the set of ground
fluents f occurring in any atom init(f) of G. By induction hypothesis, suppose that
s ∈ S, and let fluents(s) denote the set of ground atoms {true(f) : f ∈ F(s)}.
For any player p ∈ {0, 1, · · · , k}, Ap(s) is the set of all ground actions a, for which
the fact legal(p,a) is derivable from the program G ∪ fluents(s). Any action profile
a = (a0,a1, · · · ,ak) ∈ A(s) determines a successor s′ = Q(s, a) of s in S, and F(s ′) is
the set of ground all fluents f, for which the fact next(f) is derivable from the program
G ∪ fluents(s) ∪ {does(p,ap) : ap ∈ a}. According to the specifications of GDLII,
chance events are uniformly distributed,1 which implies that P(s) is the uniform distribu-
tion over A0(s). Finally, Sgoal is the set of states s for which terminal is derivable from
G∪fluents(s). In this case, the reward of player p at s is given by the constant r occurring
in the fact goal(p,r) derived from the program G ∪ fluents(s).

Recall that in General Game Playing, any game starting at the initial state sinit must
reach a terminal state in Sgoal in finite time (i.e. using a finite number of moves). Thus, the
stochastic game G of a “valid” GDL program G must be acyclic. This, together with the
fact that any node s ∈ S is, by inductive construction, connected to sinit implies that G is a
tree-like stochastic game.

1The actions of the chance player are not necessarily equiprobable. For example, a loaded dice with a prob-
ability of 1/2 to give 6 can be modeled by ten actions of random, whose the first five have the same effect
(i.e. 6).
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3 A fragment of SCSP for GDL

From a game-theoretic viewpoint, the stochastic constraint networks investigated in
[12, 26, 30] capture one-player stochastic games, in which the chance player (defined over
stochastic variables) is “oblivious”: at each round of the game, the probability distribution
over the chance player’s moves is independent from the description of the current state. In
order to encode GDL programs into stochastic constraint programs, we shall examine in this
section a slight generalization of the original SCSP model that captures multiplayer and
non- oblivious stochastic games.

3.1 Stochastic CSPs

Recall that a (valued) constraint network consists in a finite tuple V = (v1, · · · , vn)

of variables, a function D that associates with each variable vi ∈ V a finite domain
D(vi) capturing the set of values that vi can take, and a set C of constraints, which
can be divided into “hard” constraints expressing restrictions on possible variable
assignments, and “soft” constraints, assigning utilities to variable assignments. Given
a subset of variables U = (v1, · · · , vm) ⊆ V , we denote by D(U) the relation
D(v1) × · · · × D(vm).

Definition 2 A k-player Stochastic Constraint Satisfaction Problem (SCSP) is a 6-tuple
N = 〈V, Y,D, C, P, θ〉, such that V = (v1, · · · , vn) is a finite tuple of variables,
Y ⊆ V is the set of stochastic variables, D is a mapping from V to finite domains, C

is a set of constraints, P is a set of conditional probability tables, and θ ∈ [0, 1]k is a
threshold.

– Each constraint in C is a pair c = (scpc, valc), such that scpc is a subset of V , called
the scope of c, and valc is a map from D(scpc) to ([0, 1] ∪ {−∞})k .

– Each conditional probability table in P is a triplet (y, scpy, proby), where y ∈ Y is a
stochastic variable, scpy is a subset of variables occurring before y in V , and proby is a
map from D(scpy) to a probability distribution over D(y).

In what follows, we shall often adopt standard notations from probabilistic models.
Notably, if y ∈ Y is a stochastic variable and τ ∈ D(scpy) is a tuple of values in the
conditional probability table of y, then we denote by P(y | τ) the probability distribution
proby(τ ). In particular, if d ∈ D(y), then P(y = d | τ) indicates the probability that y

takes value d given τ .
By X, we denote the set V \ Y of decision variables. A constraint c ∈ C is called

a decision constraint iff its scope is restricted to decision variables, that is, scpc ⊆ X;
otherwise c is called a stochastic constraint. c is called a hard constraint if the range of valc
is {0, −∞}k , and c is called a soft constraint if the range valc is [0, 1]k . With the intuitive
meaning that −∞ is the “forbidden” value, every hard constraint c can be represented in
the usual way by a relation, denoted relc, which lists the set of allowed tuples for scpc, that
is, relc = {τ ∈ D(scpc), valc(τ ) = (0, · · · , 0)}.

Given a subset U = (v1, · · · , vm) ⊆ V , an instantiation on U is an assignment I of val-
ues d1 ∈ D(v1), · · · , dm ∈ D(vm) to the variables v1, · · · , vm, that is, I is a tuple of D(U).
We use the notation I = {(v1, d1), . . . , (vm, dm)}, to indicate that I is an instantiation on
{v1, · · · , vm}, that associates the value di ∈ D(vi) with the variable vi . An instantiation I

on U is complete if U = V . Given a subset U ′ ⊆ U , we denote by I|U ′ the restriction of
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I to U ′, that is, I|U ′ = {(vi, di) ∈ I : vi ∈ U ′}. The probability of an instantiation I on U

is given by

P(I) =
∏

y∈Y :scpy⊆U

P (y = I|y | I|scpy
)

Correspondingly, the utility of an instantiation I on U is given by

val(I ) =
∑

c∈C:scpc⊆U

val(I|scpc
)

Note that val(I ) is a tuple (val1(I ), · · · , valk(I )) assigning a utility to each player. An
instantation I is locally consistent if valp(I ) 
= −∞ for every player p, that is, I satisfies
every hard constraint in C. I is globally consistent (or consistent) if it can be extended to a
complete instantiation I ′ which is locally consistent.

A policy π for the network N is a labeled tree inductively defined as follows. The root
of π is labeled by v1. For each internal node s of π , if s is labeled by a decision variable
vi = xi , then s has a unique successor s′ labeled by vi+1, and the edge (s, s′) is labeled by a
value di ∈ D(xi). Alternatively, if s is labeled by a stochastic variable vi = yi with domain
D(yi) = {d1, · · · , dm}, then s has m successors {s1, · · · , sm}; each si is labeled by vi+1,
and its incident edge (s, si) is labeled by the corresponding value di . Finally, each leaf s in
π is labeled by the utility val(I ), where I is the complete instantiation specified by the path
from the root of π to the leaf s. Let L(π) be the set of all complete instantiations induced
by π , i.e. I ∈ L(π) iff there is a leaf s of π such that I is the path from the root to s. The
expected utility of π is the sum of its leaf utilities weighted by their probabilities. Formally,

val(π) =
∑

I∈L(π)

P (I )val(I )

A policy π is feasible iff val(π) ≥ (0, · · · , 0). In other words, π is feasible iff all paths
in π are globally consistent. Finally, π is a solution of the stochastic constraint network N

if its expected utility is greater than or equal to the threshold θ = (θ1, · · · , θk). This implies
that valp(π) ≥ θp for all players p. Clearly, any solution policy is feasible, but the converse
is not necessarily true. A network N is satisfiable if it admits at least one solution policy.

It is important to keep in mind that a solution policy π for a stochastic constraint net-
work N is not guaranteed to be a “dominant strategy” for some of the players [24]. In fact,
the notion of “policy” investigated in this study is not equivalent to the definition of “game
tree”, in which the set of decision nodes would have been partitioned into k subsets, each
associated with a specific player. Instead, the overall goal of stochastic constraint satis-
faction is to find an assignment of decision nodes for which the resulting expected utility
matches the threshold criterion.

Example 2 We consider here a conceptually simple SCSP that captures the semantics of
the cooperative “Matching Pennies” game, specified in Example 1. The network is defined
over the tuple of variables 〈x1,a, x1,b, y1, x2,a, x2,b, y2〉, where the decision variables x1,a
and x2,a (resp. x1,b and x2,b) specify the choices of alice (resp. bob) at rounds 1 and
2, and the stochastic variables y1 and y2 describe the behavior of the chance player during
both rounds. Using the values U (unset), H (heads), and T (tails), the domains of xt,p are
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{H,T} for t ∈ {1, 2} and p ∈ {a,b}, the domain of y1 is {U}, and the domain of y2 is {H,T},
equipped with the uniform distribution (P(y2 = H) = P(y2 = T) = 1/2). The decisions of
alice and bob cannot be changed during the second round, which is captured by the hard
constraints cp (p ∈ {a,b}):

cp(x1,p, x2,p) =
{
0 ifx1,p = x2,p
−∞ otherwise

The game scores are encoded by the soft constraint cs specified in Fig. 2a. Using θ = 1/2,
the policy π depicted in Fig. 2b is a solution: it is consistent with both ca and cb, and
satisfies cs with an expected utility of 1/2 = θ .

Borrowing the terminology of [12], a (decision) stage in a SCSP is a tuple of variables
〈Xt, Yt 〉, where Xt is a subset of decision variables, Yt is a subset of stochastic variables,
and decision variable occurs before any stochastic variable.

Definition 3 A T -stage k-player SCSP is a k-player SCSPN = 〈V, Y,D, C, P, θ〉, in
which V can be partitioned into T stages, i.e. V = (〈X1, Y1〉, · · · , 〈XT , YT 〉), where
{Xt }Tt=1 is a partition of V \ Y , {Yt }Ti=1 is a partition of Y , and scpyi

⊆ Xt for each
t ∈ {1, · · · , T } and each yt ∈ Yt . If T = 1, N is called a one-stage SCSP, and denoted
μSCSP.

From a computational viewpoint, the satisfiability problem for any T -stage k-player
SCSP is PSPACE-hard, since it includes as a particular case the T -state one-player
SCSP[30]. On the other hand, the complexity of a k-player μSCSP is only NPPP-complete.
This follows from the NPPP-hardness of 1-player μSCSP[30], and the fact that, for a one-
stage SCSP, the decision nodes of a solution policy π can be non-deterministically guessed
in polynomial time (NP), and the expected reward of π can be checked in probabilistic
polynomial time (PP).

3.2 From GDL to SCSP

In [13], we developed a procedure for encoding GDL games in SCSPs. The procedure takes
as input a GDL program G and a horizon T , and returns as output a T -stage SCSPN , each
decision stage 〈Xt, Yt 〉 capturing a “round” of the sequential game.

Fig. 2 The utility function of the soft constraint cs (a) and a policy (b) of the SCSPin Example 2
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Specifically, each decision stage of N is a tuple of the form 〈gt , {ft }, {at }, yt 〉, where
gt is a Boolean variable indicating whether the game has reached a terminal (goal) state;
{ft } is a set of fluent variables describing the game state at round t ; {at } = {at,1, · · · , at,k}
is a set of action variables, each at,p describing the set of legal moves of player p, and
yt = at,0 is the unique stochastic variable describing the set of legal moves of the chance
player. Additional decision variables (occurring before yt ) are used to define the conditional
probability table of yt (see below), and to express relationships between game elements
(ex: alleq in Example 1). As detailed in [13], these variables and their domains are
extracted by first eliminating function symbols from G, next identifying a variable per atom
name, and then filling the domain of the variable by collecting all ground instances of the
atom in the program.

The Horn clauses of a GDL program G can naturally be partitioned into init
rules describing the initial state, legal rules specifying the legal moves at the current
state, next rules capturing the effects of actions, and goal rules defining the players’
rewards at a terminal state. init, legal and next rules are encoded into hard con-
straints in the network N . The constraint relation is extracted in the same way as the
domains of variables, by identifying all allowed combinations of constants. Similarly,
goal rules are encoded by a soft constraint in N ; based on their semantics, the players’
rewards are set to 0 for any nonterminal state, and to a value in [0, 1] for any terminal
state.

Based on the stochastic game of G, the conditional probability table of yt specifies a
uniform distribution over the set of action values D(yt ) = {d1, · · · , dm} which have a
consistent support in the legal constraint. To this end, we use a set {bt } = {bt,1, · · · , bt,m}
of Boolean variables, each bt,i indicating whether di is a legal move, or not. A standard
channelling constraint is used to express the correspondence between {bt } and yt . Based on
this encoding, the table is intensionally defined over the scope scpyt

= {bt } by the function
P(yt = di | I|{bt }) = I|bt,i

/
∑

i I|bt,i
.

The threshold θ can be adjusted according to the desired strategy: starting from the value
θ = (0, · · · , 0) that allows all feasible policies, one can use the expected value of a solution
of the current SCSP as a new threshold, which determines a more constrained SCSP defined
over the same constraints.

3.3 From SCSP to μSCSP

As a key point of our framework, the T -stage stochastic constraint network encoding
a GDL game can be decomposed into a sequence 〈μSCSP1, · · · , μSCSPT 〉 of one-
stage stochastic constraint networks. Specifically, let N = 〈V, Y,D, C, P, θ〉 be the
SCSPassociated with a GDL game, where the variable ordering V is partitioned into T

stages 〈V1, · · · , VT 〉, with Vt = 〈gt , {ft }, {at }, yt 〉. Then, each μSCSPt in the sequence is
a tuple 〈Vt , Yt ,Dt , Ct , Pt , θ〉, where Vt = 〈gt , {ft }, {at }, yt , {ft+1}〉, Yt is the restriction
of Y to the stochastic variable yt , Dt and Ct are the restrictions of D and C to the vari-
ables in Vt , and Pt is the restriction of P to the conditional probability table of yt . Though
yt is followed by the set of decision variables {ft+1} in the ordering Vt , such variables
express fluents for which the value is propagated by the next constraint, once the previ-
ous action variables {at,1, · · · , at,k, yt } have been instantiated. By construction, the above
decomposition induces a partition of the constraint setC ofN into T constraint setsCt , each
associated with its μSCSPt . Furthermore, because any “valid” GDL program G represents a
tree-structured stochastic game, every game state can reach a terminal state. Assuming that
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N is a correct encoding of G, this implies that any instantiation I which is consistent with
the subsequence 〈μSCSP1, · · · , μSCSPt 〉 is guaranteed to be globally consistent for N .

In a nutshell, the stochastic constraint network of a GDL program at horizon T can
be decomposed into simpler μSCSPs, each associated with a distinct subset of hard con-
straints. Such a decomposition naturally encourages to solve the GDL game in a sequential
way, by iteratively solving each μSCSPt in the sequence.

To conclude this section by an illustrative example, Fig. 3 describes the t th
μSCSPreturned by our encoding procedure on the GDL program of Example 1. For the
sake of clarity, the identifiers representing variables and domains were renamed. Notably,
a,b,r denote the players alice,bob and random, respectively. The (soft) goal con-
straint ommitted in the figure is simply a reformulation of the constraint cs in Fig. 2a, using
the scope {coint,a,coint,b,coint,r}.

4 MAC-UCB

Based on a fragment of SCSPfor GDL games, we now present our resolution technique
called MAC-UCB. As indicated above, the stochastic constraint network of a GDL pro-
gram is a sequence of μSCSPs, each associated with a game round. For each μSCSPt in
{1, · · · , T }, MAC-UCB searches the set of feasible policies by splitting the problem into two
parts: a CSPand a μSCSP (smaller than the original one). The first part is solved using the

Fig. 3 A μSCSP encoding the GDL program of cooperative Matching Pennies
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MAC algorithm and the second part with the FC algorithm dedicated to SCSP. Then, a sam-
pling with confidence bound is performed to estimate the expected utility of each feasible
solution of μSCSPt .

4.1 Preprocessing step

Before examining the resolution of the μSCSP, we use some classical preprocessing tech-
niques to improve the efficiency of the resolution step. First, hard constraints with the
same scope are merged. Given a μSCSPN , two hard constraints ci and cj of N such as
scpci

= scpcj
are converted into a unique constraint ck such that relck

= relci
∩ relcj

and
scpck

= scpcj
= scpci

. Next, we remove all unary constraints (e.g. constraints c such that
|scpc| = 1), by projecting their relation onto the domain of the single variable occurring in
scpc, restricted to values allowed by the tuples of the associated relation. We also remove
the so-called universal variables. Recall that a variable is universal in c if whatever the value
assigned, c is always satisfied. Formally, given a constraint c, a variable x ∈ scpc is uni-
versal if |relc| is equal to the product of the size of the domain of x with the number of
tuples of the relation associated with the constraint ci , where scpci

= scpc \ {x}. Such vari-
ables (induced by the encoding of a GDL game in SCSP) are removed from the scope of
the constraints. The last preprocessing technique is to exploit the Singleton Arc Consistency
(SAC) [8] property. A constraint network N is singleton arc- consistent if each value (of
each variable) of N is singleton arc- consistent. A value is singleton arc-consistent if when
assigned to its variable it does not lead to an arc-inconsistent network. By application of this
property, inconsistent values are removed from the domain of variables. These preprocess-
ing techniques are performed on all μSCSPs, except the last one (in which the rewards are
revealed). SAC is performed on a CSP extracted from the μSCSP; the model of this CSP is
detailed in the next section.

4.2 Resolution step

After performing the preprocessing step, the aim of the resolution step is to enumerate
the feasible policies of the μSCSP, some of which can lead to an optimal solution. To
the best of our knowledge, the best method is Forward Checking (FC) presented in [2].
Unfortunately for a μSCSP with many constraints, FCis not efficient enough, due to its low
pruning capabilities. Instead, we split the μSCSPN into a CSPN ′ including all decision
constraints of N , and a μSCSPN ′′ containing only stochastic constraints of N . The feasible
solutions of the μSCSP are then identified by merging the solutions the CSPN ′ with the
solutions of the μSCSPN ′′.

We first examine the resolution of N ′′. For GDL programs, N ′′ includes a single con-
straint capturing the transition rule for the chance (random) player. Thus, N ′′ can be solved
using Forward Checking (FC) adapted to one side SCSPs [2].2 The set of the solution
policies obtained by FCon N ′′ is encoded into a hard constraint cs , called feasibility con-
straint, where scpcs

is the set of the decision variables of N ′′, and relcs is the set of tuples
corresponding to assignments of decision variables that are part of a feasible policy.

We now turn to the resolution of the CSPN ′. Here, the classical MAC algorithm [20, 21]
is applied to enumerate solutions of N ′. Recall that MAC interleaves inference and search,

2Specifically, our version of FC returns all solution policies of N ′′, whereas the original algorithm returns a
satisfaction threshold.
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since at each step of a depth-first search with backtracking, the Arc Consistency (AC)
[15, 16] property is maintained. In order to take into account the solutions identified in
N ′′, we simply add the corresponding feasibility constraint cs to N ′. The MAC algorithm is
then applied on N ′, and returns a set of solutions which is guaranteed to coincide with the
set of solutions of the original μSCSP (when adding the stochastic variable). MACexploits
the arc consistency property in order to effectively prune infeasible solutions of N ′. We
note in passing that it is also possible to first solve the CSPN ′ (without the feasibility
constraint) and next to process the μSCSPN ′′. However, due to the small size of N ′′, it
is more effective in practice to first solve this problem, before proceeding to the larger
problem N ′.

Example 3 We illustrate the resolution of a μSCSPN defined by the decision variables x1
and x2, and the stochastic variable y. The domains are D(x1) = {1, 2, 3} and D(y) =
D(x2) = {0, 1, 2}. The probability distribution N over D(y) is uniform, and the threshold
θ is set to 3/4. The network includes three constraints specified in Fig. 4a. The μSCSPN ′′
is restricted to the constraints {c1, c2}. For this problem, FCreturns the policies π1 and π2
described in Fig. 4. The feasibility constraint cs is added to N ′ with scpcs = {x1, x2} and
relcs = {(2, 1), (2, 2)}. The problem N ′, associated with the CSP part of N , is thus defined
by the set of (decision) variables {x1, x2} (with their associated domain) and the constraints
{c3, cs}. The MAC algorithm returns for this problem the unique solution: (x1 = 2 ; x2 = 2).

Thus, by combining the solutions obtained from N ′ and N ′′, it follows that the unique
solution policy of N is π1.

4.3 UCB

Though any GDLprogram represents a finite sequential game, the players’ rewards are only
accessible at a terminal state. So, after each resolution of a μSCSPt , we need to simulate
the next states of the game in order to estimate the utility of solutions found in μSCSPt . To
this end, we use the multi-armed bandits UCB (Upper Confidence Bound) technique [1], by
considering each feasible solution of μSCSPt as an “arm”. Starting from the partial policy
associated with a feasible solution of μSCSPt , we sample uniformly at random all possible
moves from t+1 to T −1. The “best” feasible solution of μSCSPt is the one that maximizes

ūi +
√

2 ln n
ni

, where ūi is the averaged score of the feasible solution i, ni is the number of

times i has been sampled so far, and n is the overall number of samples.3 The resolution of
the next problem in the sequence is performed by instantiating μSCSPt+1 with the values
of the best feasible solution estimated from μSCSPt .

4.4 Pruning improvements

Recall that the task of sequential decision making associated with a strategic game is
an optimization problem. Classically, this problem is addressed by solving a sequence of
stochastic satisfaction problems whose threshold is gradually increased. Starting from the
threshold θ = (0, · · · , 0), if r = (r1, · · · , rk) is the tuple of expected rewards of the
best policy estimated by UCBover the sequence 〈μSCSP1, · · · , μSCSPt 〉, then θ is reset to
(rmin, · · · , rmin), where rmin = min{ri}.

3For our experiments, 10000 simulations were performed.
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Fig. 4 Constraints of the μSCSPN , and solutions of the μSCSPN ′′

The gradual increase of the threshold is exploited to prune the search space. To this
end, our UCB implementation uses a caching technique which stores the leaves already
explored.4 By combining the leaves already encountered with the number of legal moves at
each state, one can determine whether a subtree is completely explored. If this is indeed the
case, any solution of the μSCSP whose expected value is less than θ can be safely removed.
Based on this cutting scheme, UCB can exploit its cache to remove in each μSCSP the
suboptimal solutions for θ . We also take advantage of the confidence values in UCB, which
estimate the quality of each sampled solution. When a sufficient number of domain values
of the stochastic variable are below the confidence value, the corresponding subtree can be
safely removed from the solution set of the stochastic subproblem N ′′. Correspondingly, the
number of tuples in the relation of the feasibility constraint cs is reduced, which simplifies
the resolution of the CSP. In other words, the higher the threshold θ is, the more efficient is
the resolution of the μSCSP.

5 Experimental results

We now present some experimental results conducted on a cluster of Intel Pentium CPU 3.4
GHz with 32 GB of RAM under Linux. Our framework was implemented in C++ and we
did not use any other tools.

We selected 15 games described in GDLII, including both deterministic games and
stochastic games. Game descriptions differ in the number of players, the number of fluents
and moves, the number and size of rules, and the scoring function (goal).

– Awale/Oware is an abstract strategy (board) game with 48 seeds and 2 straight rows of
6 pits called ”house”. Each player controls the 6 houses on their side of the board. The
goal of is to capture a maximum of seeds before the opponent.

– Backgammon is a board game with 2 dices and 15 pieces by player. The playable pieces
are moved according to the roll of the dice, and a player wins by removing all of her
pieces from the board.

4In our experiments, 32 GB were allowed for caching and this limit was never reached.
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– Bomberman is a strategy maze-based video game where the goal is to complete levels
by placing bombs in order to kill enemies and destroy obstacles.

– Can’t stop is a board game with 4 dices. The board includes 9 columns of different
sizes, and the goal is to reach the top of three of them with the right combinations of
dices.

– Checkers is a strategy 8 × 8 board game involving in diagonal moves of uniform game
pieces and mandatory captures by jumping over opponent pieces.

– Chess is a strategy board game with 64 squares where two players move 16 different
pieces in order to ”checkmate” the opponent’s king by placing it under an inescapable
threat of capture.

– Chinese Checkers is a strategy board game where the objective is to be the first to race
one’s pieces across the hexagram-shaped board into the corner of the star opposite one’s
starting corner. Our version has 3 players.

– Hex is an alternating move game played on a 9 × 9 board. On each step, one of
the players places a colored marker on an open hexagon. The goal is for the player
to form a path of markers of its color connecting one side of the board to the
other.

– Kaseklau is a small board game involving a mouse and a cat. The goal is to roll the
2-dice to move the mouse and the cat on different squares where slices of cheese are
placed.

– Orchard is a cooperative board game. During each round, each player rolls a 6-dice,
which includes 4 faces associated with a specific fruit tree, one face associated with
a set of pieces composing a raven, and one face (the ”basket”) allowing the player to
remove two fruits of her choice. The goal is to pick all fruits from the trees before
removing all pieces of the raven.

– Othello/Reversi is a strategy board game, played on an 8× 8 uncheckered board. There
are 64 disks with one black face and one white face. Every player is assigned to a color.
During a move, all disks of the opponent which are flanked by the disks of the current
player are flipped, and hence, assigned to the current player. The winner is the player
who has more discs of his colour than his opponent when the last playable empty square
is filled.

– Pacman is an arcade game where the player controls Pac-Man through a maze, eating
pac-dots and fruits, and avoiding 4 roaming ghosts. The player loses if a ghost touches
Pac-Man before all pac-dots are eaten, and wins otherwise.

– Pickomino is a dice game with 8 dices and 16 numbered tiles including 1 at 4 worms. At
each round, the players obtain a score by rolling dices. The goal is to get the maximum
of worms.

– Tic-tac-toe is a well-known deterministic game with two players (X and O) who
iteratively mark a 3 × 3 grid.

– Yathzee is a game where the goal is to get the highest score by rolling five dices. At
each round, the dice can be rolled up to 3 times in order to make one of the 13 scoring
combinations.

The translation of these GDL games into SCSP is summarized in Table 2, which indicates
the number of variables (#vars), the maximum domain size (maxDom), and the number
of constraints (#const) of the resulting SCSP, together the parsing time in seconds (time)
for constructing this SCSP. The most difficult game to is Backgammon, involving a large
number of variables, each with a large domain and an important number of constraints with
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Table 2 The games translated into SCSPand theirs parameters

Game #vars maxDom #const time

Awale 19 37 73 94

Backgammon 76 768 86 347

Bomberman 145 64 42 31

Can’t Stop 16 1296 409 248

Checkers 86 262144 52 43

Chess 71 4096 50 76

Chinese Checkers 103 192 87 54

Hex 22 6561 27 91

Kaseklau 18 7776 106 35

Orchard 9 146410 40 12

Othello 81 65 29 51

Pacman 93 64 22 36

Pickomino 29 1679616 223 172

TicTacToe 19 18 37 0

Yathzee 12 30 8862 182

large scope. Awale, Can’t Stop, Chess, Hex, Pickomino and Yathzee are also challenging
due to the size of their domains or the number of their constraints.

5.1 Setup

Game competitions were organized between three players. The first player is the state-
of-the-art UCT algorithm. The second player is the FC-UCB algorithm which solves
μSCSPs using only the FCalgorithm. The last player is the MAC-UCB algorithm, which
solves μSCSPs by decomposing them into two parts, and running MAC on the deterministic
part, as indicated in Section 4.2. We have implemented UCT, following the specification of
the multi-player version [25]. For the sake of fairness, we also added a cache to UCT, allow-
ing it to know in advance the subtrees already explored. We realized 1,800,000 instances
of duels between UCT, MAC-UCB and FC-UCB. For each game, a player follows the strat-
egy UCT, FC-UCB or MAC-UCB. 5000 match plays are realized with different deliberation
times per round (1s, 5s, 10s, 20s, 30s, 40s, 50s, 60s).

The horizon T was fixed to the maximum number of turns that can be sampled by
UCB during a given deliberation time. If a goal state is reached before T turns, this state and
all subsequent states are considered as terminal. If no goal state is reached at (or before) T ,
the state at T is considered irrelevant (with a reward of 0 to all players).

5.2 Results

In Table 3 are reported the percentage of wins obtained by MAC-UCB (or FC-UCB when
MAC-UCB is not used) for each game, with 30 seconds per move. The standard deviation (σ )
is also indicated. For all games, MAC-UCB statistically outperforms both UCT and FC-UCB,
and this phenomenon increases with deliberation time.



110 Constraints (2016) 21:95–114

Table 3 Results for several GDLgames with 30s by move

Game MAC-UCB vs. σ MAC-UCB vs. σ FC-UCB vs. σ

UCT FC-UCB UCT

Awale 56.7 % 1.63 % 77.7 % 1.92 % 43.2 % 2.34 %

Backgammon 68.2 % 5.49 % 84.8 % 6.36 % 47.3 % 5.87 %

Bomberman 65.4 % 6.32 % 75.7 % 5.34 % 58.4 % 5.46 %

Can’t Stop 71.7 % 6.43 % 65.9 % 4.87 % 54.7 % 5.34 %

Checkers 61.2 % 2.12 % 76.9 % 1.61 % 57.5 % 1.43 %

Chess 53.8 % 1.75 % 68.5 % 1.76 % 39.4 % 1.75 %

Chinese checkersa 55.4 % 8.24 % 78.1 % 7.23 % 32.7 % 6.51 %

Hex 69.7 % 2.45 % 73.2 % 3.24 % 55.3 % 3.12 %

Kaseklau 71.4 % 6.56 % 58.9 % 7.87 % 68.3 % 7.34 %

Orchardb 70.2 % 3.41 % 70.2 % 3.45 % 70.0 % 2.45 %

Othello 79.3 % 1.41 % 75.1 % 0.89 % 61.3 % 1.14 %

Pacman 69.1 % 2.73 % 74.1 % 3.12 % 61.8 % 3.78 %

Pickomino 63.4 % 4.89 % 65.9 % 6.10 % 52.1 % 5.34 %

Tictactoe 65.7 % 0.89 % 51.8 % 0.76 % 64.9 % 0.73 %

Yathzee 71.2 % 5.48 % 74.0 % 5.12 % 58.6 % 5.34 %

aThis game involves three players : one controls by MAC-UCB or FC-UCB and the two others by two UCT or
FC-UCB
bSince this game is cooperative, the cooresponding row indicates the percentage of victories using the same
algorithm for all players

The leftmost part of the table (MAC-UCB vs. UCT) indicates that MAC-UCB is particu-
larly efficient for handling stochastic games. Indeed, for Bomberman, Can’t Stop, Kaseklau,
Pacman, Pickomino, Yathzee, and Backgammon, MAC-UCB wins more than 70% of match
plays. For deterministic games, the standard deviation is smaller, because MAC-UCB cannot
benefit from stochastic pruning.

It is important to emphasis the specificity of two games: Orchard and Chinese Checkers.
The former is a cooperative game, and the performance of both algorithms (MAC-UCB and
UCT) is around 70%. We note in passing that this score is maximal for the optimal

Fig. 5 Number of match plays (horizontal axis) versus ratio of victories (vertical axis) for MAC-UCB against
UCT, using 30 seconds per move
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Table 4 Ratio of victories for MAC-UCB vs. UCTwith different deliberation time per round on 5000 plays

Game 1 s 5 s 10 s 20 s 30 s 40 s 50 s 60 s

Awale 38.6 % 43.3 % 47.4 % 51.6 % 56.7 % 57.9 % 61.3 % 63.0 %

Backgammon 53.1 % 58.1 % 61.4 % 65.8 % 68.2 % 71.3 % 77.0 % 79.6 %

Bomberman 58.3 % 60.0 % 60.2 % 64.7 % 65.4 % 70.1 % 72.4 % 75.6 %

Can’t Stop 50.3 % 54.7 % 59.9 % 62.2 % 71.7 % 74.9 % 76.3 % 78.9 %

Checkers 43.4 % 49.6 % 51.4 % 56.8 % 61.2 % 67.2 % 71.3 % 75.7 %

Chess 34.0 % 39.3 % 46.1 % 49.9 % 53.8 % 56.4 % 57.6 % 60.8 %

Chinese Checkers 27.4 % 35.5 % 43.7 % 50.7 % 55.4 % 59.1 % 63.2 % 65.4 %

Hex 54.7 % 56.2 % 58.5 % 67.4 % 69.7 % 71.4 % 71.9 % 72.5 %

Kaseklau 63.6 % 65.2 % 68.3 % 70.2 % 71.4 % 73.2 % 74.7 % 75.1 %

Orchard 65.3 % 68.5 % 69.9 % 70.2 % 70.2 % 70.1 % 70.2 % 70.2 %

Othello 61.9 % 64.0 % 70.6 % 75.8 % 79.3 % 82.0 % 84.2 % 84.9 %

Pacman 64.4 % 66.2 % 67.1 % 67.9 % 69.1 % 69.4 % 69.8 % 70.5 %

Pickomino 52.4 % 55.3 % 58.0 % 61.1 % 63.4 % 65.8 % 66.1 % 68.6 %

TicTacToe 63.6 % 64.4 % 64.9 % 65.4 % 65.7 % 65.9 % 65.8 % 65.4 %

Yathzee 43.5 % 50.1 % 53.7 % 64.3 % 71.2 % 75.2 % 77.1 % 78.9 %

The significance of bold corresponds to the first necessary time to win by average with MAC-UCB

strategy. For Chinese Checkers, a three player game, we observe that even if MAC-UCB is
the winner in 55 % of plays against “two” UCT, the standard deviation is important (> 8%).
So, we cannot statistically confirm that MAC-UCB is efficient enough to outperform two
UCT adversaries.

For the middle part of the table (MAC-UCBvs. FC-UCB), it is clear that MAC-UCB dom-
inates FC-UCB. Thus, the more aggressive pruning technique used by MAC-UCB is paying
off: the arc consistency property maintained by the algorithm has a significant impact for
efficiently solving μSCSPs. The rightmost part of the table (FC-UCBvs. UCT) indicates
that even if FC-UCB outperforms UCT for some games with few constraints or variables,
UCT is the winner in the majority of cases. Thus, in light of the three columns of the table,
the effectiveness of MAC (coupled with UCB) is crucial for quickly finding winning policies.

Figure 5 reports the evolution of the victories for MAC-UCB against UCT with 30s per
move when the number of plays increases up to 5000. For the deterministic Awale game,
the evolution is almost constant with a standard deviation of 1,41% for 1000 plays. In such
a deterministic case, pruning is only realized by MAC on the CSP part. For the stochastic
Backgammon game, the performance of MAC-UCB is better and significantly increases with
the number of plays. This can be explained by the increasing number of prunings induced
by UCB, whose cache is more and more exploited. The same phenomenon can be observed
for other stochastic games.

Table 4 describes the percentage of victories of MAC-UCB against UCT with different
deliberation times per round, ranging from 1 second to 60 seconds on 5000 plays. We can
observe that the performance gap between MAC-UCB and UCT increases with deliberation
time. This gap is explained by the ability of MAC to solve a more important number of
μSCSPs in the sequence, which makes easier the exploration task of UCB. For the small-
est game TicTacToe, all the search tree is explored using only 5s per move. Moreover, for
small games like Bomberman or Pacman, MAC-UCB can win using only 1s per move. Con-
trastingly, for some larger games like Awale, Chess or Chinese Checkers, MAC-UCB is
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Fig. 6 Sensitivity analysis of MAC-UCB:. On the vertical axis, the percentage of victories of MAC-UCB vs.
UCT, and on the horizontal axis, the percentage of resolution during the deliberation time (30s)

defeated by UCTwhen the deliberation time is too small (typically less than 10s). How-
ever, MAC-UCB obtains better results for stochastic games by exploiting stochastic pruning.
Notably, for the Orchard game, the optimal strategy is discovered using only 20s per move.

We conclude the experimental analysis by shedding a light on the dilemma for
MAC-UCB between exploitation (solving) and exploration (sampling). In our experiments,
90 % of deliberation time was dedicated to exploitation and 10 % to exploration. In order
to justify this ratio, Fig. 6 shows a sensitivity analysis of MAC-UCB for the different games,
using 30s per move.5 The plots report the percentage of victories of MAC-UCB for ratios
ranging from 0 % to 100 % for the solving part. The optimum is reached between 86 and
94 %, which stresses the importance of focusing mainly on the structure of the games,
captured by the hard constraints.

5A similar phenomenon was observed using 10s and 50s per move.
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6 Conclusion

In this paper, we identified a fragment of SCSP for representing GDL games with
uncertain and complete information. Based on this fragment, we proposed an algo-
rithm, MAC-UCB, that searches solution policies by combining a Constraint Pro-
gramming method (MAC) with a multi-armed bandit method (UCB). Extensive exper-
iments on various games, with different deliberation times per round, highlight the
ability of MAC-UCB to address the GGP challenge. In most cases, MAC-UCB out-
performs UCT, the reference in the field of games with uncertain (but complete)
information.

This work paves the way for many research opportunities. From an algorithmic view-
point, the resolution step could be improved by exploiting symmetries, and arc consistency
methods dedicated to SCSPs (ex: [2]). Another natural perspective of research is to extend
the approach to games with incomplete information.
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