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Abstract—In imperfect-information games, agents must make
decisions based on partial knowledge of the game state. The Belief
Stochastic Game model addresses this challenge by delegating
state estimation to the game model itself. This allows agents
to operate on externally provided belief states, thereby reducing
the need for game-specific inference logic. This paper investigates
two approaches to represent beliefs in games with hidden piece
identities: a constraint-based model using Constraint Satisfaction
Problems and a probabilistic extension using Belief Propagation
to estimate marginal probabilities. We evaluated the impact of
both representations using general-purpose agents across two
different games. Our findings indicate that constraint-based
beliefs yield results comparable to those of probabilistic inference,
with minimal differences in agent performance. This suggests
that constraint-based belief states alone may suffice for effective
decision-making in many settings.

Index Terms—General Game Playing, Imperfect-Information
Games, Knowledge Representation.

I. INTRODUCTION

Imperfect-information games pose a key challenge in Artifi-
cial Intelligence (AI), requiring agents to make decisions under
uncertainty about the true state of the game. Unlike perfect-
information games, where all aspects of the environment are
observable, these games involve hidden elements that players
must infer, such as unknown cards or secret piece positions.
The inference process is complex and usually requires agents
to maintain internal estimates of the actual state, often relying
on handcrafted game-specific logic. These solutions hinder the
development of general and reusable agents, particularly in the
context of General Game Playing (GGP) [1].

To address this challenge, the Belief Stochastic Game
(Belief-SG) model was recently introduced [2]. This model
shifts the responsibility for state estimation from the agent to
the game model itself, enabling the development of domain-
independent agents. In Belief-SG, the agent receives a belief
state from the model, representing a probability distribution
over the actual state of the game. This externalization frees
agents from having to implement their own inference proce-
dures, allowing them to focus purely on strategy.

Although Belief-SG allows for detailed modeling of un-
certainty, it remains unclear whether such precise estimation
is necessary for effective decision-making. In many games,
the uncertainty over the state of the game can be tightly
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constrained using purely logical reasoning without comput-
ing explicit probability distributions. This raises the question
of whether the complexity of probabilistic inference offers
strategic advantages over simpler logic-based models tracking
possible states.

To investigate this question, we leverage a constraint sat-
isfaction problem (CSP) [3] formulation of the belief state,
which efficiently encodes the set of game states that remain
logically possible given past observations. On top of this CSP
representation, we implement a Belief Propagation (BP) [4]
layer to estimate the likelihoods over the CSP-encoded vari-
ables, enabling the computation of probability distributions
over hidden information. This structure allows us to compare
agents that rely solely on feasibility constraints with those that
additionally exploit probabilistic beliefs derived from the same
underlying model. Our experimental evaluation examines how
these different forms of belief access affect agent performance
in the Belief-SG model.

The aim of this study is to evaluate the practical impact
of belief precision on strategic effectiveness. By isolating
the informational content available to agents, we aim to
better understand the trade-offs involved in belief modeling.
These insights contribute to the ongoing development of
general agents capable of playing a broad class of imperfect-
information games without domain-specific knowledge.

II. BACKGROUND

Imperfect-information games are commonly formalized us-
ing models such as Extensive Form Games (EFG) [5] and
Factored-Observation Stochastic Games (FOSG) [6]. While
both models have played a key role in the development of AI
agents for imperfect-information games, they have limitations
that hinder their application in the context of GGP.

In EFG, there is no distinction between public and private
information, nor is there a representation of what each player
knows about the game state. However, this distinction is cru-
cial for decision-making and search in imperfect-information
settings. Although extensions have been proposed to address
this issue [7], it has been shown that this distinction cannot
be extracted in a general way from EFG representations [8],
making the model unsuitable for GGP.

FOSG was introduced to overcome some of these issues by
modeling partial observability explicitly. In this framework,



agents do not observe the full game state but receive structured
observations, divided into public and private parts, which
allows some reasoning about the knowledge of other agents.
While FOSG supports sound search under uncertainty [9],
agents receive only partial observations about the state of the
game, requiring them to construct and maintain state estimates.
This often results in handcrafted state estimation tailored to
specific games, making it difficult to generalize developments
across a wide variety of games.

These limitations have led to highly specialized agents.
For example, Libratus [10] and DeepStack [11] are tailored
for Heads-Up No-Limit Texas Hold’em Poker, with custom
abstractions and state representations. Even agents that aim for
generality, such as Student of Games [12], rely on the selection
of game-specific architectures, limiting their true generality.

The Belief Stochastic Game (Belief-SG) model was recently
proposed to address these challenges by externalizing the state
estimation process to the game model itself. In Belief-SG, the
agent receives from the model a belief state, a probability
distribution over the actual state of the game. Public and
private information can still be separated by providing different
belief states to different agents. This design enables agents to
focus purely on strategic decision-making without having to
implement game-specific inference procedures. As a result,
Belief-SG provides a more general framework for reasoning
in imperfect-information games within the context of GGP.

Due to the limitations of the EFG and FOSG models, most
prior work on state estimation in imperfect-information games
has relied on handcrafted, game-specific logical inference or
probabilistic models. While variants of CSPs have been used
for the modeling and the detection of symmetries in perfect-
information games [13], to our knowledge, constraint-based
belief state modeling, and in particular the use of Belief
Propagation over CSPs, has not been explored in the context
of GGP for imperfect-information games.

III. BELIEF STATE REPRESENTATION

In the Belief-SG model, the game maintains a belief state
capturing the agent’s uncertainty about the hidden aspects of
the game. In GGP, this belief representation must be general,
interpretable, and independent of agent-specific inference.

Although designing a universal belief representation for
all games is impractical, most games commonly played by
humans share structural features that can be exploited. In
particular, imperfect-information games tend to involve hidden
elements in one of two forms: either unknown positions
of pieces (e.g., the position of the pieces in Battleship or
Kriegspiel) or unknown identities of pieces (e.g., the color
and suit of a card in Poker or the rank of a piece in Stratego).
In practice, the majority of games with imperfect information
fall into the latter category, and this work focuses exclusively
on such games.

The remainder of this section describes two belief repre-
sentations built on this structure. The first captures the set of
logically feasible states using a constraint satisfaction formula-
tion. The second extends this representation with probabilistic

inference through Belief Propagation to estimate the likelihood
of each piece’s identity.

A. Constraint-Based Belief Representation

In imperfect-information games of the type we consider,
uncertainty arises solely from the hidden identities of pieces.
The rest of the game state, such as piece positions, turn order,
the structure of the board, or mutable variables like scores or
pots, is fully observable. We therefore divide the belief state
into two components: a deterministic, observable part, and a
hidden part representing the possible identities of the pieces.

We represent the hidden components using a constraint sat-
isfaction problem, a formalism well-suited to discrete domains.
A CSP consists of a set of variables, each with a finite domain
of possible values, and a set of constraints that specify which
combinations of values are allowed. In this context, the CSP
encodes all states of the game that remain logically feasible
given public information and past actions.

Formally, we define the hidden part of the belief state as
follows:

– P is the set of all pieces with unknown identities.
– T is the set of piece types. Each type t ∈ T is associated

with a set of valid identities Vt.
– θ : P → T is the type function mapping each piece to its

corresponding type.
– D = {Dp}p∈P is a set of domains, where Dp ⊆ Vθ(p)

represents the current set of identities that piece p may
assume, given the accumulated public and private infor-
mation acquired in the current state.

To enforce consistency in the number of piece identities
that can appear, we associate a Global Cardinality Constraint
(GCC) [14] with each type. For each t ∈ T , a constraint GCCt

ensures that the number of occurrences of each identity v ∈ Vt

among the pieces of type t remains within allowed limits (e.g.,
the known number of cards in a deck). These constraints reflect
the underlying structure of the game and are essential to rule
out infeasible states.

The overall belief representation takes the form of a collec-
tion of CSPs, one per piece type, where each CSP includes a
set of variables Pt = {p ∈ P | θ(p) = t}, domains {Dp}p∈Pt

,
and a GCC constraint GCCt over the variables.

As the game progresses, actions can eliminate some values
from the domains. For example, moving a piece in Stratego
rules out the piece being a flag or a bomb. When this occurs,
the GCCs propagate these changes to ensure that the overall
count of identities remains feasible. This can lead to further
pruning of other domains, or even force a piece to take on a
specific identity when only one valid option remains.

The resulting CSP represents the support of the belief state,
that is, the set of all game states that remain logically consis-
tent with the history of the game. Although this representation
does not assign probabilities to states, it provides a compact
and efficient structure to rule out impossible configurations.



B. Probabilistic Belief Representation

While the constraint-based belief model captures which
identity assignments are still logically feasible, it provides no
information about the likelihood of each possibility. In some
games, this information may help agents resolve uncertainty
between multiple options. To enrich the belief state with
such quantitative insight, we estimate marginal probability
distributions over the domain of each piece, reflecting how
likely each identity is given the current state of the game.

A naive approach would involve enumerating all valid
assignments consistent with the CSP and computing exact
frequencies to derive probabilities. However, this is intractable
for even moderately sized games due to the exponential
number of valid assignments. Instead, inspired by the work
of Pesant G. [15], we adopt a more scalable approach based
on Belief Propagation (BP), a message-passing algorithm used
for approximate inference in graphical models.

BP is typically applied on factor graphs [16], which are
bipartite graphs composed of variable and factor nodes. Each
variable node represents a discrete random variable, and factor
nodes impose constraints on subsets of variables and encode
their joint compatibility.

BP proceeds by iteratively exchanging messages between
variable and factor nodes. Each variable node sends messages
to its connected factors summarizing its current belief, while
each factor node responds with messages reflecting the con-
sistency of the variable’s current belief with other connected
variables under the factor’s constraint. Once the messages
converge, the marginal distribution of each variable can be
approximated by combining its incoming messages.

To apply BP to our belief state representation, we first
reinterpret the CSP as a factor graph. Each piece identity vari-
able becomes a variable node, and each constraint becomes a
factor node. In particular, the GCCs introduced earlier must be
translated into factor nodes. However, computing BP messages
for standard multi-value GCCs directly is computationally
intractable due to their complex combinatorial nature.

To simplify this, we decompose each GCC into a set of
simpler count constraints, one for each identity v ∈ Vt. Each
count constraint enforces how many times the identity v can
occur among variables of type t and is implemented as a
separate factor node connected only to the variables whose
domain includes v.

Each count constraint effectively acts as a sum constraint,
since limiting the number of times an identity appears amounts
to summing binary indicators over the variables. We adapt the
message computation algorithm introduced by Pesant [15] for
such constraints, enabling efficient propagation in our model.
This results in a set of approximate marginal distributions over
the domains, reflecting the relative likelihood of each identity
assignment given the current game state.

IV. EXPERIMENTS

To evaluate the practical impact of probabilistic versus
purely constraint-based belief representations, we compare
the performance of agents using each approach across two

imperfect-information games. All experiments were conducted
on a cluster of Intel Xeon E5-2667 CPUs at 3.2 GHz running
Linux. The implementation is written in C++, using the
Gecode library [17] for constraint solving, and is publicly
available1.

We evaluate two general-purpose agents based on Monte
Carlo simulations, both of which operate without any game-
specific heuristics. Each agent is tested under two belief mod-
els: one using only constraint-based belief state representation,
and the other enriched with probabilistic estimates via BP. This
controlled setup isolates the effect of belief representation on
decision-making performance.

A. Agents

Both agents handle imperfect information via determiniza-
tion, sampling fully observable states consistent with the belief
model. In the constraint-based setting, values are assigned
uniformly at random, with constraint propagation ensuring
consistency. In the probabilistic setting, sampling is guided by
the marginal distributions estimated through BP. Variables are
selected in order of confidence, and values are sampled from
their distributions. After each assignment, the CSP is updated,
and BP is incrementally rerun to maintain global consistency.

1) Pure Monte Carlo (PMC): This agent performs a flat
Monte Carlo search. For each legal action, it samples a fixed
number of playouts from that action, each starting from a
sampled fully observable determinization. The outcomes are
averaged, and the action with the highest expected return is
selected. No search tree is built, and evaluation relies entirely
on rollout statistics.

2) Decoupled UCT (DUCT): This agent builds on the
Decoupled UCT algorithm for simultaneous games [18], an
extension of the classic UCT algorithm [19]. In this formu-
lation, each player independently selects actions at each node
based on their own statistics, without modeling the opponents’
choices. To handle imperfect information, the algorithm is
applied across multiple sampled determinizations, each main-
taining its own search tree. The final action is selected by
majority vote across all trees.

B. Games

1) Mini-Stratego: We use a simplified version of Stratego
where each player controls five hidden pieces on a 5×5 board.
The possible identities are Flag, Bomb, Miner, and Soldier.
The goal is to capture the flag of the opponent. Soldiers defeat
Miners, and only Miners can defuse Bombs.

2) Goofspiel: Goofspiel is a simultaneous bidding game in
which each player has a hand of 13 cards numbered 1 to 13,
and a separate deck determines the prize cards. At each round,
a prize card is revealed, and players simultaneously bid one
card from their hand. The highest bidder wins the prize, with
ties resulting in a shared reward. Each card may only be used
once.

1https://github.com/AchilleMorenville/Belief-SG
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TABLE I
WIN RATES (%) OF ROW AGENTS AGAINST COLUMN AGENTS.

Game Agent R PMCC PMCP DUCTC DUCTP

Mini-Stratego

PMCC 86.5 – 49.8 45.1 42.2
PMCP 87.2 50.2 – 41.4 45.7
DUCTC 88.4 54.9 58.6 – 49.1
DUCTP 87.7 57.8 54.3 50.9 –

Goofspiel

PMCC 91.6 – 49.9 21.5 20.0
PMCP 90.0 50.1 – 21.3 19.3
DUCTC 79.2 78.5 78.7 – 49.1
DUCTP 78.6 80.0 80.7 50.9 –

C. Results

We evaluated five agents across two imperfect-information
games to compare probabilistic and constraint-based belief
representations. Each agent pair played 1,000 matches, totaling
10,000 per game. Agents include PMC and DUCT variants
using constraint-based (C) or probabilistic (P) beliefs, plus a
random baseline (R). All used the same simulation budget: 10
determinizations per move, with PMC running 1,000 simula-
tions per action and DUCT 1,000 per determinization. Table I
shows win rates for each agent against all opponents.

D. Discussion

The results show that constraint-based and probabilistic
belief representations yield comparable performance across
games and agents. In both Mini-Stratego and Goofspiel, agents
using Belief Propagation show no consistent advantage over
those using feasibility constraints alone. This suggests that for
determinization-based agents, the added cost of probabilistic
inference may be unjustified when constraint filtering already
approximates the state well.

Across both games, DUCT variants consistently outperform
their PMC counterparts, highlighting the strength of tree-based
planning under uncertainty. This finding reinforces that the
planning algorithm itself has a greater influence on perfor-
mance than the precision of the belief model, at least in the
context of the agents and games evaluated here.

The structure of the games likely influences these outcomes.
In domains with prolonged uncertainty or where subtle be-
lief differences strongly affect decisions, richer probabilistic
models may yield clearer benefits. Thus, their full value may
emerge only in more information-sensitive settings or with
agents that use belief states more directly in planning.

V. CONCLUSION

This work examined the practical impact of probabilistic and
constraint-based belief representations in the Belief-SG model.
For determinization-based agents, constraint satisfaction pro-
vides a strong approximation of hidden state uncertainty, with
only marginal gains from costlier Belief Propagation. This is
an early step toward assessing the practical role of belief repre-
sentation. Future work will expand to more agents, games, and
complex domains to better identify when probabilistic belief
estimation offers an advantage.
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