
ar
X

iv
:2

20
5.

00
45

1v
3

 [
cs

.A
I]

 1
2

Ju
n

20
24

The Ludii Game Description Language is Universal

Dennis J.N.J. Soemers,∗ Éric Piette,† Matthew Stephenson,‡ and Cameron Browne§

∗Department of Advanced Computing Sciences, Maastricht University

Email: dennis.soemers@maastrichtuniversity.nl
†ICTEAM, Université catholique de Louvain

Email: eric.piette@uclouvain.be
‡College of Science and Engineering, Flinders University

Email: matthew.stephenson@flinders.edu.au
§Email: cambolbro@gmail.com

Abstract—There are several different game description lan-
guages (GDLs), each intended to allow wide ranges of arbitrary
games (i.e., general games) to be described in a single higher-level
language than general-purpose programming languages. Games
described in such formats can subsequently be presented as
challenges for automated general game playing agents, which are
expected to be capable of playing any arbitrary game described
in such a language without prior knowledge about the games to
be played. The language used by the Ludii general game system
was previously shown to be capable of representing equivalent
games for any arbitrary, finite, deterministic, fully observable
extensive-form game. In this paper, we prove its universality by
extending this to include finite non-deterministic and imperfect-
information games.

Index Terms—Ludii, game description language, general game
playing

I. INTRODUCTION

General Game Playing (GGP) is a subfield of Artificial

Intelligence (AI) research, in which the challenge is to develop

agents that can successfully play arbitrary games without hu-

man intervention or prior knowledge of exactly which games

are to be played [1]. Implementing such an agent in practice

typically requires the use of a Game Description Language

(GDL); a standardised format such that the rules of any game

can be provided to an agent without having to implement it

directly in a general-purpose programming language.

The GDL that popularised GGP research [2], [3] originated

primarily from Stanford; we refer to it as S-GDL in this paper.

Other systems with GDLs include Regular Boardgames (RBG)

[4] and Ludii [5], [6] for general games, as well as GVGAI

[7], [8] for video games. Aside from facilitating GGP research,

the use of domain-specific languages has also been proposed

for the ease with which they enable the implementation of

custom, targeted testbeds [9].

S-GDL is a relatively low-level logic-based GDL. After

the introduction of an extension to support randomness and

imperfect information [10], it was proven that S-GDL is

universal [11]; any arbitrary finite extensive-form [12] game

can be faithfully represented in a legal S-GDL description.

For the GDL of RBG, this was only proven for the subset of

fully-observable, deterministic games [4]. Similarly, Ludii’s

GDL (L-GDL) was previously only proven to be capable

of representing any finite, deterministic, perfect-information,

alternating-move game, although it did already include basic

support for stochasticity and hidden information (without a

proof of universality) [6].

For S-GDL, the proof of its universality [11] essentially

consists of encoding the entire game tree of any arbitrary

finite extensive-form game in logic statements. L-GDL is a

comparatively higher-level language that primarily consists of

many keywords that game designers and players can readily

understand as common game terms, such as board, piece,

slide, hop, and so on. By design, it is intended to be easier

to read, understand and use for game designers [13], with less

of a focus on including the low-level language elements that

would enable the exhaustive enumeration of all states of an

extensive-form game tree. It has a relatively tightly-enforced

structure, with many enforced restrictions due to strong typing.

In comparison to the lower-level S-GDL with a relatively

flat structure that makes it straightforward to exhaustively

enumerate a complete game tree, this makes it non-trivial to

prove a similar level of generality for L-GDL. Nevertheless,

in this paper we are able to prove the universality of L-

GDL by demonstrating that it can represent the same class

of games as proven by Thielscher [11] for S-GDL, including

games with randomness and hidden information. This provides

a theoretical argument that L-GDL is a suitable, sufficiently

general and powerful description language for problems for

AI research.

The remainder of this paper is structured as follows. Sec-

tion II provides the necessary background information on

extensive-form games and the L-GDL game description lan-

guage. Next, Section III proposes a detailed procedure that, for

any finite extensive-form game G, creates a matching L-GDL

game description for a Ludii game GL. Section IV formally

states a theorem of equivalence for G and GL, and proves the

theorem. In Section V, we provide a brief discussion of two

related topics that may be considered of interest around the

main theorem. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we provide background information on the

standard, universal formalism of extensive-form games, as well

as L-GDL.

http://arxiv.org/abs/2205.00451v3

A. Extensive-Form Games

Extensive-form games [12] are a standard, general formali-

sation of games in the broad, mathematical sense of the word

(i.e., including many decision-making problems that would not

generally be viewed by most humans as “fun” games). The

formal definition is as follows:

Definition 1. An extensive-form game G is specified by a tuple

G = 〈P , T ,U , ι,D, I〉, where:

• P = {1, 2, . . . , k, η} is a finite set of k ≥ 1 players, and

a “nature” player η to model stochastic events.

• T is a finite tree, where every node represents a single

game state s ∈ S. The full set of states S = Sinn ∪ Ster

may be partitioned into a subset of non-terminal states

(inner nodes) Sinn and a subset of terminal states (leaf

nodes) Ster, such that Sinn ∩Ster = ∅. Every branch of

the tree represents a possible transition between states.

• U : Ster 7→ R
k is a payoffs function, such that U(s)

denotes a vector of k real-valued payoffs (for the k

players) for any terminal game state s ∈ Ster.

• ι : Sinn 7→ P is a function such that, for any non-terminal

game state s ∈ Sinn, ι(s) gives the player to play in that

state. Whenever ι(s) 6= η (i.e., whenever we are not in a

chance node), the player gets to choose which branch to

follow down the tree (it is not permitted to go back up to

the parent node).

• D : {(s, s′) | ι(s) = η, s ∈ Sinn, s
′ ∈ S} 7→ R gives, for

any non-terminal state s controlled by the nature player

η, a probability 0 ≤ D(s, s′) ≤ 1 that the nature player

“selects” s′ as the successor. Note that this must yield

proper probability distributions over successors, i.e. ∀s ∈
{s | ι(s) = η, s ∈ Sinn} :

∑
s′∈S D(s, s′) = 1.

• I : {(p, s) | p ∈ P \ {η}, s ∈ S} 7→ P(S), where

P(S) denotes the powerset of S, gives the information

set I(p, s) of player p for state s (i.e., the set of

states that are indistinguishable from each other from the

perspective of player p when the true state is s).

In this paper, we focus on finite extensive-form games

G, where T is of a finite size. Furthermore, we focus on

sequential-move games, since the function ι gives only a single

player to move per game state s. In theory, this is without

loss of generality, since any simultaneous-move game can be

equivalently modelled as an sequential-move game in which

the effects of moves are delayed until every active player in

a turn has selected their move, and moves within the same

turn are hidden information for all other players [14]. In

practice, Ludii does contain additional support for modelling

simultaneous-move games, but for our theoretical analysis we

do not need this.

B. L-GDL

The basic structure of an L-GDL game description is de-

picted in Fig. 1. It is defined by a grammar [15], automatically

derived from Ludii’s source code [13], which specifies which

keywords (also referred to as ludemes) and types of data

(strings, integers, real numbers, and so on) can or cannot

be used depending on the context. As shown by Fig. 1, a

game description file is expected to describe exactly one game,

which has three top-level entries:

1) players: describes basic data about the players (e.g.,

how many players the game is played by).

2) equipment: describes aspects such as any board(s) or

graph(s) the game is played on, types of pieces or dice

used in the game, and so on.

3) rules: describes rules used to (i) start the game

(generate initial game state, e.g. by placing initial pieces

on a board), (ii) play the game (generate lists of legal

moves), and (iii) end the game (evaluate whether a state

is terminal and determine the outcomes for the players).

Some of these aspects must be specified (such as the play

rules), whereas others may be omitted if unnecessary (e.g.,

start rules are unnecessary in games that start with an empty

board) or if they have a suitable default value (e.g., Ludii

assumes a default number of players of 2 if left unspecified).

L-GDL includes a relatively large set of ludemes, many of

which encapsulate relatively high-level concepts in keywords

that game designers can easily understand and use to write and

read game descriptions. Piette et al. [6] provide more detailed

information on the Ludii system, and Browne et al. [15]

provide a complete, detailed language reference for L-GDL.

A full example description for the game of Tic-Tac-Toe is

presented in Fig. 2. In this example, the equipment used to play

the game is defined as a square board of size 3 (by default

using a tiling of square cells), a “Disc” piece type used by

player 1, and a “Cross” piece type used by player 2. The

subtree of ludemes (move Add (to (sites Empty)))

describes that the set of legal moves consists of moves that

add a piece to any site in the set of empty sites. The subtree

(if (is Line 3) (result Mover Win)) describes

the end condition of this game, which is that the current mover

wins if they complete a contiguous line consisting of 3 of their

pieces.

III. FROM EXTENSIVE-FORM GAMES TO L-GDL

Given any arbitrary finite, extensive-form game G =
〈P , T ,U , ι,D, I〉 as defined in Definition 1, we describe how

a corresponding Ludii game GL can be modelled in L-GDL.

In Section IV, we formally state and prove the theorem

that G and GL form equivalent game trees with one-to-one

correspondences between the set of all possible trajectories in

G and the set of all possible trajectories in GL. For simplicity,

and without loss of generality, we make several assumptions

about G:

Assumption 1. G has a unique initial game state s0 as root

node of its game tree.

This assumption is without loss of generality because a

game with multiple distinct possibilities for the initial game

state can be equivalently modelled as a game with a single

chance node as root, with appropriate probabilities assigned

for all the intended “real” initial game states.

(game "Game Name"

(players . . .)
(equipment {

. . .
})

(rules

(start . . .)
(play . . .)
(end . . .)

)

)

Fig. 1. Basic structure of an L-GDL game description for Ludii. Note that
curly braces are used for arrays in L-GDL.

(game "Tic-Tac-Toe"

(players 2)
(equipment {

(board (square 3))

(piece "Disc" P1)

(piece "Cross" P2)

})

(rules

(play (move Add (to (sites Empty))))

(end (if (is Line 3) (result Mover Win)))

)

)

Fig. 2. Full L-GDL description for the game of Tic-Tac-Toe.

Assumption 2. If the root node of G is not a chance node, the

player labelled as 1 will be the first player to make a move.

This assumption is without loss of generality because there

is otherwise no particular meaning to the labels that are

assigned to players.

The following subsections describe how to fill in the basic

template L-GDL description from Fig. 1 to construct such a

Ludii game GL. The intuition behind our approach is similar

to that of the proof by Piette et al. [6] (which was restricted to

deterministic, perfect-information settings) in the sense that we

explicitly enumerate the entire game tree of G as a graph that

the players play on by moving stones along a path from the

root to any leaf. The most significant change is that, to support

imperfect-information settings, we now use multiple “copies”

of such a graph, with sets of possibly more than one stone

per player moving down each player’s respective tree to track

the information sets (rather than individual states) that players

navigate between. As an example, a full game description file

for the Monty Hall problem, described as explained in the

following five subsections, is provided in the Ludii github

repository.1 This problem involves partial observability and

stochasticity.

A. Defining the Players

For a k-player extensive-form game G with players P =
{1, 2, . . . , k, η}, the set of players in Ludii can simply be

defined as (players k). It is not necessary to explicitly

define the nature player in Ludii. The player labelled as player

1https://github.com/Ludeme/Ludii/blob/master/Common/res/lud/test/
dennis/MontyHallProblemExtensiveForm.lud

1 in Ludii will, by default, be the first player to make a move,

matching Assumption 2.

B. Defining the Equipment

Firstly, we define a neutral Marker0 piece type—which we

use to keep track of the true game state that we are in during

any given trajectory of play—as well as one MarkerP piece

type for every player 1 ≤ P ≤ k—which are used to reveal the

correct information set to each player. This equipment is de-

fined in the equipment({. . .}) section of the game descrip-

tion using (piece "Marker" Neutral) and (piece

"Marker" Each).

Secondly, we construct the game board by defining a graph

that contains (k + 1) × |S| vertices. These may be thought

of as representing (k + 1) copies of the game tree T in G,

with |S| vertices per copy, although it is not necessary to also

include the connectivity structure (i.e., the edges of the tree)

in this graph. Hence, the game board consists of one large

graph, which contains separate graph representations of the

full game tree for each player (including the neutral player).

Such a graph can be constructed manually using (graph

vertices:{. . .}). Let i denote the unique index of a state

si ∈ S. Then, in the graph for player p (assume p = 0 for the

nature player), the index of the node that corresponds to si is

given by p × |S| + i. Without loss of generality, we assume

that the index of the initial game state is 0.

Thirdly, for every state si ∈ S and every player 1 ≤
p ≤ k, we define a region in the equipment that contains

all the indices of the vertices corresponding to states that

are in the information set of p when the true state is si.

More formally, for all 0 ≤ i < |S| and all 1 ≤ p ≤
k, we define a region named "InformationSet_i_p"

containing all the indices p × |S| + j for all j ∈ {j |
sj ∈ I(p, si)}. Such a region can be defined in a game

description using (regions "InformationSet_i_p"

{. . . }). Whenever the true state is si, this region allows us

to easily access all the vertices corresponding to the complete

information set for any given player p.

Fourthly, for every player 1 ≤ p ≤ k, we define a region in

the equipment named "Subgraph_p" that contains all the

indices of the vertices in that player’s respective subgraph,

i.e. all indices in {j | p × |S| ≤ j < (p + 1) × |S|}.

Such a region can be defined in a game description using

(regions "Subgraph_p" {. . . }). We similarly define a

region "Subgraph_0" for the first subgraph.

Note that the definitions of piece types, graphs, and regions

as detailed above do not yet have many semantics associated

with them. These statements largely serve to declare the

existence of various types of data, such that they may be

referenced (by their names) and used in the definitions of rules

as described in the subsequent subsections. Fig. 3 provides a

template for an equipment definition following the steps that

were just listed.

C. Defining the Start Rules

Due to Assumption 1, we know that every player’s in-

formation set for the initial game state contains only s0;

https://github.com/Ludeme/Ludii/blob/master/Common/res/lud/test/dennis/MontyHallProblemExtensiveForm.lud
https://github.com/Ludeme/Ludii/blob/master/Common/res/lud/test/dennis/MontyHallProblemExtensiveForm.lud

. . .
(equipment {

(piece "Marker" Neutral)

(piece "Marker" Each)

(board

(graph

vertices:{

// Vertices for tracking game state

{x1 y1} . . . {x|S| y|S|}

// Vertices for tracking first infoset

{x1 y1} . . . {x|S| y|S|}

. . .

// Vertices for tracking kth infoset

{x1 y1} . . . {x|S| y|S|}

}

)

use:Vertex

)

// For every state and every player, an infoset

// listing all the possible states

(regions "InformationSet_0_1" {. . .})
. . .
(regions "InformationSet_|S|_1" {. . .})
(regions "InformationSet_0_2" {. . .})
. . .
(regions "InformationSet_|S|_k" {. . . })
// Each player has a copy of the tree

(regions "Subgraph_0" {0..<|S| − 1>})
(regions "Subgraph_1" {|S|..<2× |S| − 1>})
. . .
(regions "Subgraph_k" {<k × |S|>..<(k + 1)× |S| − 1>})

})

. . .

Fig. 3. Template for the equipment definition of a Ludii game GL, modelling
an equivalent extensive-form game G with |S| different states and k players.
The expressions angled brackets are used for generality, but would be
replaced by the concrete result of the expression in any single concrete game
description. The values used for x- and y-coordinates only affect display in
Ludii’s graphical user interface, and are irrelevant in terms of semantics.

∀pI(p, s0) = {s0}. Hence, we start the game by placing a

marker for each player (including a neutral marker for the

nature player) on the vertex that represents the initial game

state in each player’s respective subgraph in the board. For

any player p, the index of this vertex is given by p × |S|,
assuming p = 0 for the nature player. Presence or absence of

markers on any site in a subgraph corresponding to a player p

must be hidden from all other players p′ 6= p, to avoid leaking

information that those other players should not have access to.

Start rules that accomplish this setup for the initial

game state are provided in Fig. 4. Each of the (place

"Markerk" <x>) lines places a Marker for player k on

site x, marking the information set that player k believes the

game is in. In the initial state, every player’s information set

contains only a single state, thanks to Assumption 1. The

marker for k = 0 does not correspond to any particular player,

but is used to mark the true game state. The ludeme (set

Hidden (sites x) to:y) states that all sites in a region

x are set to be hidden (i.e., unobservable) to player(s) y.

The combination of all such lines in the figure ensures that

the first copy of the game tree (with index 0) is hidden to

all players, and every other copy is only observable by its

respective player.

More formally, for any Ludii game GL with these start rules,

. . .
(start {

(place "Marker0" 0)
(place "Marker1" <1× |S|>)
. . .
(place "Markerk" <k × |S|>)
(set Hidden

(sites "Subgraph_0") to:All)

(set Hidden

(sites "Subgraph_1") to:(player 2))

. . .
(set Hidden

(sites "Subgraph_1") to:(player k))
(set Hidden

(sites "Subgraph_2") to:(player 1))

(set Hidden

(sites "Subgraph_2") to:(player 3))

. . .
(set Hidden

(sites "Subgraph_2") to:(player k))
. . .
(set Hidden

(sites "Subgraph_k") to:(player k − 1))
})

. . .

Fig. 4. Start rules for a Ludii game GL, modelling an equivalent extensive-
form game G, with k players. The expressions to compute vertex indices in
angled brackets are used for generality, but would be replaced by the concrete
result of the expression in any single concrete game description.

the following statements hold in the initial game state:

• There is a piece of type Marker0 (not owned by any

player) on the vertex with index 0.

• For every player index P ∈ [1, . . . , k], there is a piece of

type MarkerP (owned by player P) on the vertex with

index P × |S|.
• No pieces are placed other than those mentioned above.

• All vertices and their contents in the region named

"Subgraph_0" are set to be hidden to all players. This

means that no player can observe that vertex 0 contains

a Marker0 piece. Similarly, none of the players can

observe that all other vertices in this region are empty.

• For every player index P ∈ [1, . . . , k], and every other

player index P ′ ∈ [1, . . . , k], with P ′ 6= P , all vertices

in any region named "Subgraph_P" are hidden from

P ′. This means that every player P can only observe

vertices (and markers placed on them) in the region

named "Subgraph_P".

D. Defining the Play Rules

The play rules in Ludii define how to generate a list of legal

moves for any given current game state si. In our GL model,

where we aim to replicate the structure of the game tree of

the extensive-form game G, we may distinguish two primary

cases:

1) If si is a chance node, i.e. ι(si) = η, in Ludii a

regular player will be in control because Ludii does

not explicitly include a nature player. Hence, we should

generate only a single legal move such that the player

is forced to traverse the branch that the chance player

would have picked in G. This can be accomplished by

using the (random {. . . } {. . . }) ludeme, where the

first array contains a sequence of n weights, and the

second array contains a sequence of n move-generating

ludemes, for a chance node with n possible branches.

For example, (random { p, q, r } { A B C })
randomly selects one of the ludemes A, B, or C to gen-

erate the list of legal moves, with probabilities p
p+q+r

,
q

p+q+r
, or r

p+q+r
, respectively. The appropriate weights

to use can be derived from the nonzero probabilities

D(s, s′) as specified in G.

2) If si is not a chance node, i.e. ι(si) 6= η, the mover ι(si)
should have one move corresponding to every branch

from si in the game tree of the extensive-form game

G. This can be implemented using an (or { . . . })
ludeme that wraps around other ludemes, each of which

generates one of the legal moves.

Without any knowledge of any general rules that may

determine how legal moves are computed from a game state

si in the extensive-form game G, it is necessary to explicitly

enumerate all game states and define the play rules separately

per state. One way to accomplish this is by using a chain of

(if C A B) ludemes, where:

• C is a condition of the form (= (where "Marker"

Neutral) i): this checks whether the Marker0 piece

is located on vertex i, and can hence be used to determine

whether or not the current game state is si.

• A is a ludeme that generates the moves in the case that

the condition of C is satisfied by the current game state

(i.e., if the current game state is si).

• B is a ludeme that generates the moves if the current

game state does not satisfy the condition of C; this can

again be a ludeme of the same (if C A B) form.

Suppose that there is some branch in the extensive-form

game tree of G that leads from a state si to a state sj . In the

corresponding Ludii game GL, we require a corresponding

move that has the following effects on the game state:

1) It should move the Marker0 piece, which should

currently be located on the vertex with index i, to the

vertex with index j. This enables us to continue tracking

the true game state.

2) For every player 1 ≤ p ≤ k, any Markerp pieces

currently on the board should be removed, and new

Markerp pieces should be placed on all vertices in the

InformationSet_j_p region. This enables us to let

every player know which information set it transitioned

into.

3) By default, Ludii reveals information about positions

that become empty. Because the above effects remove

some pieces from positions that should still remain hid-

den from many players, vertices should be appropriately

set to hidden again as they were originally set in the start

rules.

4) By default, Ludii updates the index of which player is

designated the mover after every move, by incrementing

it or resetting it to 1 after player k made a move. If this

results in a different player to move than the player ι(sj)
that should become the mover in sj , we need to include

an extra effect in the move that correctly sets the player

to move. Note that, if ι(sj) = η in G, it does not matter

which player is set to be the mover in Ludii, since we

only generate one legal move anyway that whichever

player is the mover will be forced to pick.

Suppose that such a state si has n legal moves. A straightfor-

ward way to present n different options to the player ι(si) is

to allow them to select one out of any of vertex 0 ≤ v < n,

and to specify appropriate consequences for each of those

“select” moves. These consequences should correspond to the

vth branch from si in the game tree of G, but otherwise do not

necessarily have any particular relationship with the specific

vertex v; selecting vertices is simply a mechanism through

which the player can distinguish between n different moves.

Fig. 5 depicts the specification of a move rule for a

single transition from si to sj . The (move Select (from

n) (then . . .)) ludeme defines a legal move where the

player may opt to select a vertex n, which will lead to

consequences as defined inside the (then . . .) ludeme.

These consequences correspond to the four types of effects

listed previously. The marker tracking the true game state

(hidden to all players) is moved by (fromTo (from i)

(to j)). The (remove (sites Occupied by:Pk))

ludemes each remove all markers for one player k from

the board, and each of the (add (piece k + 1) (to

(sites "InformationSet_j_k"))) ludemes similarly

places new markers to mark the new information set for a

player k. Note that there is an offset of +1 due to the presence

of the neutral piece in the game. As in Fig. 4, the (set

Hidden . . .) ludemes ensure that no player can observe

any information they should not be able to. Finally, the (set

NextPlayer (player ι(sj))) ludeme ensures that the

correct player to move is set in the subsequent game state.

E. Defining the End Rules

For each of the terminal game states st ∈ Ster in G, we

can define a separate end rule in GL that checks whether that

specific state has been reached by tracking the position of

the Marker0 piece, and assigns a vector of payoffs to the k

players as given by U(st) using the payoffs ludeme. Fig. 6

provides an example of such end rules for an example game

for k = 3 players with two terminal game states.

In the end rules, a ludeme of the form (if (A)

(payoffs . . .)) ensures that, as soon as a game state

is reached where the condition (A) holds, the game ter-

minates and payoffs are assigned to all players as per

the (payoffs . . .) ludeme. A condition of the form (=

(where "Marker" Neutral) x), as used in Fig. 6, is

true in any game state where there is a piece of type Marker0

on the vertex with index x. Given the construction of the

start and play rules described previously, this means that we

check whether we are in the state meant to represent state

sx from the original extensive-form game G. A ludeme of

the form (payoffs (payoff P1 x) (payoff P2 y)

. . .
(move Select (from n)
(then (and {

(fromTo (from i) (to j))
(remove (sites Occupied by:P1))

(remove (sites Occupied by:P2))

. . .
(remove (sites Occupied by:Pk))
(add (piece 2)

(to (sites "InformationSet_j_1")))
(add (piece 3)

(to (sites "InformationSet_j_2")))
. . .
(add (piece k + 1)

(to (sites "InformationSet_j_k")))
(set Hidden

(sites "Subgraph_0") to:All)

(set Hidden

(sites "Subgraph_1") to:(player 2))

. . .
(set Hidden

(sites "Subgraph_1") to:(player k))
(set Hidden

(sites "Subgraph_2") to:(player 1))

(set Hidden

(sites "Subgraph_2") to:(player 3))

. . .
(set Hidden

(sites "Subgraph_2") to:(player k))
. . .
(set Hidden

(sites "Subgraph_k") to:(player k − 1))
(set NextPlayer (player ι(sj)))

}))

)

. . .

Fig. 5. Ludeme generating a move corresponding to the nth branch from a
state si, leading to a state sj , in the game tree of an extensive-form game G
with k players. The player that should be the mover in the next state sj is
denoted by ι(sj)—except we replace it by any arbitrary integer in [1, k] if
ι(sj) = η.

(end {

(if (= (where "Marker" Neutral) 88)

(payoffs {

(payoff P1 -1)

(payoff P2 0.5)

(payoff P3 1)

})

)

(if (= (where "Marker" Neutral) 2077)

(payoffs {

(payoff P1 10)

(payoff P2 12)

(payoff P3 2020)

})

)

})

Fig. 6. Example end rules for an example game with k = 3 players, where
states s88 and s2077 are terminal states, with payoff vectors of [−1, 0.5, 1]
and [10, 12, 2020], respectively.

(payoff P3 z)) assigns payoffs of x, y, and z, to the first,

second, and third player, respectively.

IV. PROOF OF EQUIVALENCE

Based on the strategy for constructing a Ludii game GL for

any extensive-form game G as described above, we present

Theorem 1, which may intuitively be understood as stating

that it is possible to model any arbitrary finite extensive-form

game in L-GDL.

Theorem 1. Under Assumptions 1 and 2, for any arbitrary

extensive-form game G, a corresponding Ludii game GL con-

structed as described in Subsections III-A–III-E, is equivalent

to G in the sense that the following criteria are satisfied:

1) The game description of GL is a valid game description

according to the specification of L-GDL’s grammar [15].

2) There exists a one-to-one correspondence between tra-

jectories from the root node to any possible leaf node

in the game tree of G, and trajectories of play that

are possible from the initial game state in GL. More

concretely, this means that:

a) For every node s that is reachable from the root

node s0, including s0 itself, there exists an equiva-

lent game state in GL that is also reachable in the

same number of transitions from the initial game

state of GL.

b) For every node s in the game tree of GL where

ι(s) 6= η (i.e., any node that is not a chance node),

the equivalent state in GL also has ι(s) as the

player to move.

c) For every node s in the game tree of GL where

ι(s) 6= η, if there are n branches to n successors,

there are also n legal moves in the equivalent state

in GL.

d) For any chance node s that is reachable from the

root node s0 of the game tree of G, for every

possible s′ that has a probability D(s, s′) > 0 of

being the successor of s, there is also a probability

D(s, s′) that a transition to the equivalent state of

s′ in GL is the only legal transition in any arbitrary

trajectory that reaches the equivalent of s in GL.

e) For any terminal node s ∈ Ster in the game tree

of G, the equivalent state in GL is also terminal,

and assigns the same vector of payoffs U(s).

3) Any player 1 ≤ p ≤ k playing the Ludii game GL

cannot distinguish between any pair of states that are

the equivalents of two distinct nodes s, s′ if and only if

they share the same information set I(p, s) = I(p, s′).

These criteria are similar to those used for the proof of

universality for S-GDL [11].

Proof. By construction, the game description as detailed in

subsections III-A to III-E is a valid L-GDL description. As of

the public v1.1.17 release of Ludii—which first introduced

the (random . . .) and (payoffs . . .) ludemes—all of

the ludemes used are supported. This satisfies criterion 1.

The start rules of GL (see Fig. 4) ensure that, in the initial

game state, a piece of type Marker0 is placed on vertex 0,

and not on any other position. All moves that can possibly be

generated are of the form depicted in Fig. 5, which can only

affect the positions of Marker0 pieces through its (fromTo

(from i) (to j)) rule, which moves whichever piece

is at vertex i to vertex j. This means that the number of

Marker0 pieces cannot change; there must always be one,

and only its position can change due to (fromTo (from

i) (to j)) rules. For any particular value of i, such a

rule is only used in situations that satisfy the (= (where

"Marker" Neutral) i) condition, i.e. only if vertex i

currently contains the sole Marker0 piece. For any pair of

values i and j, if there is a branch from si to sj in the game

tree of G, it is also possible for there to be a legal move that

moves the Marker0 piece from vertex i to vertex j in GL;

such a move is either legal for sure if si is not a chance node,

or legal with probability D(si, sj) if si is a chance node. This

satisfies criterion 2a; the equivalent state of a node si can

always be identified as the one that has the Marker0 piece

on vertex i.

The move rules as described in Fig. 5 have, by construction,

been set up to ensure that the next player to move is set

to ι(sj)—or any arbitrary integer in [1, k] if ι(sj) = η—

whenever a move is made that moves the Marker0 piece

to vertex j—which means that the equivalent state of a node

sj is reached. This ensures that criterion 2b is satisfied for

every node except for the root node s0. Assumption 2 ensures

that the criterion is also satisfied for s0.

By construction, as described in Subsection III-D, for every

node si that is not a chance node, the equivalent state in GL has

its move rules defined by an (or { . . . }) rule that wraps

around n different rules, each of which generates exactly 1
legal move, such that n is the number of successors of si in

the game tree of G. This satisfies criterion 2c. Similarly, the

correct number of moves with correct probabilities D(s, s′)
as required by 2d are explicitly defined as described in

Subsection III-D.

The end rules as described in Subsection III-E explicitly

detect any game state in the Ludii game GL that is the

equivalent of a terminal node s ∈ Ster of the extensive-form

game G, and explicitly assign the corresponding payoffs vector

U(s). This satisfies criterion 2e.

By Assumption 1, there is only a single initial game state,

and every player is aware of that. Therefore, every player’s

information set for the root node contains only the root node;

∀p∈{1,...,k}I(p, s0) = {s0}. This is reflected by the start rules

described in Subsection III-C which, for every player p, place

a marker for that player—and only visible to that player—in

the subgraph used to represent the state space of G for that

player. Every move that can be applied in any trajectory is of

the form illustrated by Fig. 5, which ensures that:

1) Every player p can only ever observe markers on vertices

of “its own” subgraph.

2) Let j denote the vertex that contains the neutral

marker—hidden from all players—in the first subgraph.

For every player p, within that player’s “own” subgraph,

there is always a marker on every vertex that represents

any of the nodes in the information set I(p, sj) for that

player in that state.

This means that, for any pair of nodes that is in the same

information set for a player in the game tree of G, the pair

of equivalent game states in GL are also indistinguishable

from each other from that player’s perspective (due to the

arrangement of markers on vertices visible to that player being

identical). Note that the move rules as described in Fig. 5

were deliberately set up such that players always select vertex

n to pick the nth move in a list of legal moves, irrespective

of which vertices are subsequently affected by that move. It

might have been more intuitive to directly select the vertex

corresponding to the node in the extensive-form game tree to

transition into, but this could reveal additional information that

the player should not have access to. With this, criterion 3 is

also satisfied and the proof is complete.

V. DISCUSSION

The main topic of this paper, with Theorem 1 and its proof,

is to prove that L-GDL is sufficiently expressive to model

the equivalent of any arbitrary finite extensive-form game.

A related question of potential interest is the converse of

Theorem 1: is any game that can be modelled in L-GDL

equivalent to a finite extensive-form game? This question

can be answered in the negative with counterexamples. For

example, the game of Mu Torere (which has been implemented

in Ludii) is known to go on indefinitely under perfect play

[16], which makes it an example of a game with an infinitely-

sized game tree that can be implemented in L-GDL. Hence,

while L-GDL is sufficiently expressive to model any game of

the class considered in Theorem 1, it is not restricted to that

class.

VI. CONCLUSION

Ludii’s game description language (L-GDL) has primarily

been designed to be easy to use for game designers, with a

focus on facilitating the design of board games and similar

abstract games. In practice, its count of over 1000 distinct

game descriptions2 (which far exceeds the game counts in

official repositories of many other systems with GDLs, such

as S-GDL [2], [3], RBG [4], and GVGAI [8]) has already

demonstrated its flexibility and generality. In this paper, we

have also proven its generality from a theoretical angle,

demonstrating that it is possible to write an equivalent game

in L-GDL for any arbitrary finite extensive-form game [12].

Two assumptions (Assumptions 1 and 2) on the structure of

extensive-form games were made to simplify the proof, but

both assumptions are without loss of generality. Simultaneous-

move games were not considered explicitly, but are implicitly

also covered by the proof due to the possibility of modelling

any simultaneous-move game as a sequential one with hidden

information [14]. This provides a significant extension of

an earlier proof [6] by including stochastic and imperfect-

information games (and, implicitly, also simultaneous-move

games), and means that the expressiveness of L-GDL matches

that proven by Thielscher [11] for S-GDL.

This result suggests that we can opt to use Ludii over S-

GDL in GGP research for some of its other advantages, such

2https://ludii.games/library.php

https://ludii.games/library.php

as computational efficiency [6] and ease of use, without a

loss in expressiveness. While the somewhat convoluted way

of defining games used for the theoretical proof is unlikely

to be an efficient way of implementing many “real” games

in practice, it may be a fruitful starting point for designing

synthetic game trees for targeted research into the relations

between certain game tree characteristics and the effectiveness

of different algorithms [17], [18] within the same framework

and API (Ludii) that also supports many real games.

In this paper, we primarily focused on the expressiveness

of the L-GDL language. This is one of the primary types of

properties that is typically considered of importance for GDLs

[4], [11]. However, there are also other interesting theoretical

properties of GDLs and game descriptions, which may be

further explored (for the case of L-GDL) in future work. For

example, in future work it would be interesting to examine

whether or not L-GDL is Turing complete, and what the

complexity is of deciding whether or not any given L-GDL

description satisfies certain properties such as playability or

well-formedness [19].

ACKNOWLEDGMENT

This research is funded by the European Research Council

as part of the Digital Ludeme Project (ERC Consolidator Grant

#771292).

REFERENCES

[1] J. Pitrat, “Realization of a general game-playing program,” in IFIP

Congress (2), 1968, pp. 1570–1574.
[2] M. R. Genesereth, N. Love, and B. Pell, “General game playing:

Overview of the AAAI competition,” AI Magazine, vol. 26, no. 2,
pp. 62–72, 2005. [Online]. Available: http://www.aaai.org/ojs/index.
php/aimagazine/article/view/1813

[3] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “Gen-
eral game playing: Game description language specification,” Stanford
Logic Group, Tech. Rep. LG-2006-01, 2008.

[4] J. Kowalski, M. Maksymilian, J. Sutowicz, and M. Szykuła, “Regular
boardgames,” in Proceedings of the 33rd AAAI Conference on Artificial

Intelligence. AAAI Press, 2019, pp. 1699–1706.
[5] C. Browne, M. Stephenson, É. Piette, and D. J. N. J. Soemers, “A

practical introduction to the Ludii general game system,” in Advances in

Computer Games. ACG 2019, ser. Lecture Notes in Computer Science,
T. Cazenave, H. J. van den Herik, A. Saffidine, and I.-C. Wu, Eds., vol.
12516. Springer, Cham, 2020, pp. 167–179.

[6] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii – the ludemic general game system,” in
Proceedings of the 24th European Conference on Artificial Intelligence
(ECAI 2020), ser. Frontiers in Artificial Intelligence and Applications,
vol. 325. IOS Press, 2020, pp. 411–418.

[7] T. Schaul, “An extensible description language for video games,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 4, pp. 325–331, Dec. 2014.

[8] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game AI: A multitrack framework for evaluating
agents, games, and content generation algorithms,” IEEE Transactions

on Games, vol. 11, no. 3, pp. 195–214, 2019.
[9] M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. Jiang, E. Hambro,

F. Petroni, H. Küttler, E. Grefenstette, and T. Rocktäschel, “Minihack
the planet: A sandbox for open-ended reinforcement learning research,”
in Advances in Neural Information Processing Systems, 2021.

[10] M. Thielscher, “A general game description language for incomplete
information games,” in Proceedings of the Twenty-Fourth AAAI Confer-

ence on Artificial Intelligence. AAAI, 2010, pp. 994–999.
[11] ——, “The general game playing description language is universal,”

in Proceedings of the Twenty-second International Joint Conference on
Artificial Intelligence, IJCAI-11, 2011, pp. 1107–1112.

[12] E. Rasmusen, Games and Information: An Introduction to Game Theory,

4th ed. Oxford, England: Blackwell Publishing, 2007.
[13] C. Browne, “A class grammar for general games,” in Advances in

Computer Games, ser. Lecture Notes in Computer Science, A. Plaat,
W. Kosters, and J. van den Herik, Eds., vol. 10068, Leiden, 2016, pp.
167–182.

[14] J. Watson, Strategy: An Introduction to Game Theory, 3rd ed. New
York: W. W. Norton & Company, 2013.

[15] C. Browne, D. J. N. J. Soemers, É. Piette, M. Stephenson,
and W. Crist, “Ludii language reference,” ludii.games/downloads/
LudiiLanguageReference.pdf, 2020.

[16] M. Ascher, “Mu Torere: An analysis of a Maori game,” Mathematics

Magazine, vol. 60, no. 2, pp. 90–100, 1987.
[17] R. Ramanujan, A. Sabharwal, and B. Selman, “Understanding sampling

style adversarial search methods,” in Proceedings of the Twenty-Sixth

Conference on Uncertainty in Artificial Intelligence, 2010, pp. 474–483.
[18] ——, “On the behaviour of UCT in synthetic search spaces,” in ICAPS

2011 Workshop on Monte-Carlo Tree Search: Theory and Applications,
2011.

[19] A. Saffidine, “The game description language is Turing complete,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 4, pp. 320–324, 2014.

http://www.aaai.org/ojs/index.php/aimagazine/article/view/1813
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1813
ludii.games/downloads/LudiiLanguageReference.pdf
ludii.games/downloads/LudiiLanguageReference.pdf

	Introduction
	Background
	Extensive-Form Games
	L-GDL

	From Extensive-Form Games to L-GDL
	Defining the Players
	Defining the Equipment
	Defining the Start Rules
	Defining the Play Rules
	Defining the End Rules

	Proof of Equivalence
	Discussion
	Conclusion
	References

